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Abstract: Despite the widespread use of the finite-difference time-domain (FDTD) method for
modeling plasmonic systems, there is a lack of detailed convergence and accuracy studies for
periodic nanoparticle systems in which both particle radius and interparticle distance are critical
parameters. Using an in-house parallelized 3D-FDTD code for which we implemented interface
field averaging, convergence and accuracy were evaluated for various spherical particle radii,
inter-distances, and radius-to-mesh size ratios. We found that Interface Field Averaging (IFA)
FDTD improved accuracy and convergence with respect to per-component (Per-C) meshing. In
the worst case of this study, the convergence error decreased from 4.9% to 2.6% only by using
IFA. Accuracy was verified by benchmarking our simulation results with COMSOL Multiphysics
software. Furthermore, we notice that there exists no general rule for choosing the mesh size.
Careful convergence testing should therefore be carried out systematically.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Metallic nanoparticle (MNP) based structures continue to attract great interest within the scientific
community for their applications in light-harvesting [1–3], sensing [4,5] or nonlinear optics
[6,7]. MNPs are particularly interesting since many different experimental techniques can
synthesize nanoparticles of various compositions and sizes [8]. Nevertheless, the resulting
optical properties are very sensitive to geometry [9], including the interparticle distance [10]
and, in multilayer systems, the spacer layer thickness [11–14]. Therefore, efficient simulation
tools for the prediction of the optical response of MNP structures are desirable. Fortunately,
the progress in both simulation techniques and computational power has enabled to carry on
optimizations of plasmonic structures that were once too demanding in terms of computational
resources. Among available methods [15], the Finite Element Method (FEM), the Finite-
Difference Frequency-Domain (FDFD) method, the Rigorous Coupled Wave Analysis (RCWA)
[16] and the Finite-Difference Time-Domain (FDTD) method are among the most popular ones
to simulate the response of plasmonic structures. This article focuses on the FDTD method
[17,18] and its efficiency for this purpose. Reviews and benchmarks of different methods can be
found in [19–21].

Many current MNP-based designs utilize nanoparticles with a radius between 20 and 60 nm
(Table 1) for applications within the ultraviolet - near infrared range (300-1250 nm). Few articles
discuss the case of very small nanoparticles (i.e., radius around 10 nm). Some numerical studies
using the FDTD method do not mention the mesh size, in spite of the fact that it is a crucial
parameter for the accuracy of simulations.
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Table 1. Brief overview of some recent MNP-based plasmonic designs by numerical simulations.

Reference Radius of
nanospheres

(nm)

MNP
material

Matrix material Simulation
method

Mesh size
(nm)

Purpose

[22] 11 Au Dichloromethane
solution

FDTD 0.58 Evaluation of the
number of MNPs

in a solvent

[23] 25 - 50 Ag Rhodamine 590
Chloride polymer

FDTD Not
mentioned

Modification of
the emission

[24] 12 - 50 Ag Air / Si FDTD 4 Study of MNP
synthesis

[25] 25 - 50 Au Dielectric (n ∈ [1,2]) FDFD Not
mentioned

Evaluation of the
impact of the

MNPs’
orientation

[26] 40 - 90 Ag, Al, Au,
SiO2, TiO2,

Si3N4

Aluminium doped
Zinc Oxide (AZO)

FDTD Not
mentioned

Absorption
enhancement for

solar cells

[27] 50 Ag Air FEM Not
mentioned

Sensing
applications

[28] 10-50 Ag Glucose solution FDTD Not
mentioned

Sensing
applications

[29] 10-100 Au Various solutions FEM Not
mentioned

Dengue diagnosis

[30] 10 Au Air and water FDTD 0.5 Surface enhanced
Raman

spectroscopy
sensing

[31] 8-72 Ag Air FDTD 0.125 Coloring metal
surfaces

Optical modelling of small (sub-wavelength scale) structures is by no means trivial [32].
For the FDTD method, technical limitations arise when fine meshing is required. Indeed, by
using explicit FDTD models, i.e. which are exempt from matrix solutions, computation time
and memory usage scale as the fourth and the third powers of the inverse of the mesh size,
respectively [33]. Increasing the mesh size, i.e. decreasing the spatial resolution, reduces this
computational cost, but the FDTD method can then suffer from staircase discretization, especially
when the geometry of the mesh does not match the geometry of the simulated structure. This
issue is particularly critical when using structured meshes based on Yee-cells [34]. Structured
meshes are defined by quadrilaterals in 2D and hexahedrons in 3D. Their connectivity is implicit
hence the neighbors of each element should not be stored in memory, which is a computational
advantage. More advanced FDTD implementations exist and recent works have demonstrated
the feasibility of implementing 3D unstructured meshes for a FDTD code which addresses such
discretization problems [35]. Regarding more advanced structured meshes, one can resort to
graded meshes. Graded meshes consist in refining the mesh size in certain regions, such as near
interfaces, in order to model the local field phenomena with more accuracy. Graded meshes are
tedious to implement and will not necessarily solve computation time problems. Another possible
method is the Interface Field Averaging (IFA) method [36–40]. IFA can be found in literature as
“conformal-FDTD”, but to avoid any confusion with other interpretations of conformal meshing
for which the mesh element boundaries must coincide with the object boundaries, we decided to
rename the method. A review of the limitations of this method can be found in [41]. IFA, is easy
to implement and assessing the benefits of this method is one of the goals of this work.
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Whatever the method used, inappropriate meshing results in convergence issues. Even for
commercial simulation software, such as Lumerical [42] which uses a state-of-the-art FDTD
implementation, convergence testing is required when simulating metallic NPs [43]. A detailed
3-D convergence analysis, with regard to the mesh size, was reported in [44]. The case study
consisted of an isolated metallic nanoparticle with a radius of 60 nm, a metal dipole antenna and a
metal bowtie antenna. However, a parametric study of the convergence as a function of the mesh
size for various spherical nanoparticle radii, including very small ones (radius< 10nm), as well
as interacting MNPs, has not yet been addressed in literature. In this article, we investigate the
influence of the mesh size on the convergence of the Reflectance, Transmittance and Absorptance
(RTA) spectra for silver (Ag) NPs of radii varying between 5 nm and 60 nm, arranged periodically
in a silicon carbide (SiC) host medium. We then examine the benefits and limitations of using
IFA in this geometry. Finally, we compare our FDTD results with those obtained by FEM using
unstructured mesh thanks to the COMSOL Multiphysics [45] software which performs very well
for nanometric plasmonic structures [32,46]. Below a NP radius of 5 nm, the dielectric function
of metals such as silver is no longer independent of the size of the nanoparticles [24,47]. For
this reason, that case will not be examined in this article. The choice of SiC and Ag materials
is motivated by applications of plasmonic nanostructures for functional coatings. The aim
is to produce a wear-resistant plasmonic structure which benefits from silver’s excellent, and
well-known, plasmonic properties but also from silicon carbides excellent mechanical properties
such as great hardness and good anti-oxidation properties.

2. Method

In this section, we will detail the geometry of the MNP system, describe the simulation parameters
and explain how we evaluate the convergence of the RTA spectra.

2.1. Geometrical model

The optical modelling is performed with a home-made FDTD (Finite-Difference Time-Domain)
code [48–50]. The code is developed in Fortran95, parallelized thanks to the openMP [51]
library and compiled with the Intel Fortran compiler ifort. Figure 1 is a cross-section of the
3-dimensional model which is periodic in two directions (x,y). Periodic boundary conditions
(PBC) are used to mimic an infinite periodic structure. A Convolutional Perfectly Matched Layer
(CPML) absorbing medium is placed above and below the simulated structure. The CPML
absorbing medium is highly absorptive for propagative and evanescent waves, which allows it to
be placed near the structure. Moreover, the CPML technique is independent of the host material
used, and can therefore be adapted to dispersive media [52]. In order to model both host (SiC)
and MNP (Ag) dispersive media, we used the Auxiliary Differential Equation (ADE) technique
which is based on an advanced multiple Drude-Lorentz model [53]. The dielectric function is of
the form

ε(ω) = ε∞ + εD(ω) +

P∑︂
p=1
εp(ω), (1)

where ε∞ is the permittivity at infinite frequency, εD(ω) =
ω2

D
iγDω−ω2 is the Drude dielectric function

and εp(ω) =
∆ε(ω2

p−iγ′pω)
ω2

p−2iωγp−ω2 a modified Lorentz function (γD,ωD, ∆ε, ωp, γp, γ′p are real valued
fitting coefficients). The number of modified Lorentz functions (P) needed to accurately describe
the permittivity is fixed by the user. The refractive indices of silicon carbide and silver were
obtained from [54] and [55], respectively, and are available online [56]. The model parameters,
according Eq. (1), of the materials are reported in Table 2.

The illumination is chosen at normal incidence thanks to an incident plane-wave source adapted
to periodic conditions. The reflected and transmitted electromagnetic powers are computed by



Research Article Vol. 3, No. 6 / 15 Jun 2024 / Optics Continuum 847

72 implementation, convergence testing is required when simulating metallic NPs [43]. A detailed 
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76 the mesh size for various spherical nanoparticle radii, including very small ones (radius < 
77 10nm), as well as interacting MNPs, has not yet been addressed in literature. In this article, we 
78 investigate the influence of the mesh size on the convergence of the Reflectance, Transmittance 
79 and Absorptance (RTA) spectra for silver (Ag) NPs of radii varying between 5 nm and 60 nm, 
80 arranged periodically in a silicon carbide (SiC) host medium. We then examine the benefits and 
81 limitations of using IFA in this geometry. Finally, we compare our FDTD results with those 
82 obtained by FEM using unstructured mesh thanks to the COMSOL Multiphysics [45] software 
83 which performs very well for nanometric plasmonic structures [32,46]. Below a NP radius of 5 
84 nm, the dielectric function of metals such as silver is no longer independent of the size of the 
85 nanoparticles [24,47]. For this reason, that case will not be examined in this article. The choice 
86 of SiC and Ag materials is motivated by applications of plasmonic nanostructures for functional 
87 coatings. The aim is to produce a wear-resistant plasmonic structure which benefits from 
88 silver’s excellent, and well-known, plasmonic properties but also from silicon carbides 
89 excellent mechanical properties such as great hardness and good anti-oxidation properties.
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94
95 Fig. 1: Computational domain and material composition of the 
96 studied MNP system. δ = 10 nm for all radii, Γ represents the 
97 interparticle distance, CPML = Convolutional Perfectly Matched 
98 Layer, PBC = Periodic Boundary Condition, I = Interface, which is 
99 where the field averaging will be applied and R = particle radius.

100 The optical modelling is performed with a home-made FDTD (Finite-Difference Time-
101 Domain) code [48–50]. The code is developed in Fortran95, parallelized thanks to the openMP 
102 [51] library and compiled with the Intel Fortran compiler ifort. Figure Fig. 1 is a cross-section 
103 of the 3-dimensional model which is periodic in two directions (x,y). Periodic boundary 
104 conditions (PBC) are used to mimic an infinite periodic structure. A Convolutional Perfectly 
105 Matched Layer (CPML) absorbing medium is placed above and below the simulated structure. 
106 The CPML absorbing medium is highly absorptive for propagative and evanescent waves, 
107 which allows it to be placed near the structure. Moreover, the CPML technique is independent 
108 of the host material used, and can therefore be adapted to dispersive media [52]. In order to 
109 model both host (SiC) and MNP (Ag) dispersive media, we used the Auxiliary Differential 
110 Equation (ADE) technique which is based on an advanced multiple Drude-Lorentz model [53]. 
111 The dielectric function is of the form

Fig. 1. Computational domain and material composition of the studied MNP system. δ= 10
nm for all radii, Γ represents the interparticle distance, CPML=Convolutional Perfectly
Matched Layer, PBC= Periodic Boundary Condition, I= Interface, which is where the field
averaging will be applied and R= particle radius.

Table 2. Model parameters of SiC and Ag

Fitting
coefficients

Ag SiC

ε∞ 1.6965 1.0513

γD 3.2604e+ 13 /

ωD 1.7205e+ 32 0

∆ε 0.1000 1.8707 0.0100 3.8139 4.7918

ωp 6.3052e+ 15 7.7798e+ 15 2.6301e+ 15 7.6325e+ 15 1.1124e+ 16

γp 4.3146e+ 14 2.9315e+ 15 1.3008e+ 15 1.9932e+ 15 3.3752e+ 15

γ
′

p 1.8849e+ 16 3.5490e+ 15 2.5732e+ 17 1.9209e+ 03 7.3516e+ 03

integrating the Poynting vector on two virtual planes, respectively above and below the structure.
Due to the position of the reflectance plane, the incident field must be ignored while computing
the Poynting vectors on this plane by using a total field/scattered field method. The absorptance
A is computed according to the energy conservation relation A= 1-R-T, where R and T are the
reflectance and the transmittance, respectively. Finally, in an effort to compensate for staircase
discretization errors in the spherical Ag MNPs, IFA is implemented. Its basic principle is simple:
weighted averages of the electric field are computed if a mesh cell (Yee-cell) is crossed by an
object (here a nanoparticle). Figure 2 illustrates a 2D example of a Yee-cell being crossed by
an interface between two media. In this configuration, the horizontal segment at the cell’s top
edge on which Ex

(︂
i + 1

2 , j + 1
)︂

is computed is completely within material 2 and needs no special

considerations. On the contrary, the bottom segment where Ex

(︂
i + 1

2 , j
)︂

crosses the boundary
between material 1 and material 2. As a consequence, the electric field is computed by:

Ex

(︃
i +

1
2

, j
)︃
=
δx
∆x

E1
x

(︃
i +

1
2

, j
)︃
+

1 − δx
∆x

E2
x

(︃
i +

1
2

, j
)︃

, (2)

where E1
x and E2

x are computed as if they were completely inside material 1 and material 2,
respectively.

2.2. Simulation parameters

Table 3 lists all the FDTD simulation parameters. The CPML thickness is fixed to 30 nm in
order to avoid any reflection error. The distance between the CPML and the source, the distance
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137
138 Fig. 2: 2D representation of the interface field averaging method. 
139 The indices "i" and "j" are taken along the two perpendicular 
140 periodic directions. ∆ is the mesh size, i.e., the size of Yee-cell in 
141 the x direction.

142 2.2 Simulation Parameters
143 Table 3 lists all the FDTD simulation parameters. The CPML thickness is fixed to 30 nm in 
144 order to avoid any reflection error. The distance between the CPML and the source, the distance 
145 between the source and the reflectance plane and the distance between the reflectance plane and 
146 the top surface of the structure are fixed to 5Δ, 10Δ and 10Δ, respectively, where Δ is the mesh 
147 size. The plane-wave is introduced by direct field in free space and the host material is SiC. The 
148 radius of the silver nanoparticles (R) varies between 5 and 60 nm. The edge-to-edge interparticle 
149 distance (Γ) between two adjacent nanoparticles is either 4 or 10 nm. The nanoparticle is placed 
150 at the center of the SiC slab in the periodic unit cell. Several mesh sizes are investigated: R/5, 
151 R/10, R/20, R/40, R/50, R/60, R/100 and R/200, R being the radius of the nanoparticles. Given 
152 a pulse duration of 2.7 fs, the simulation time is fixed to 25.0 fs in all cases in order to ensure a 
153 steady-state solution of the studied system. 25.0 fs is a choice based on the consideration that 
154 light travels in the simulation domain in approximately 0.5 fs. Once a steady-state solution 
155 reached, further increasing the simulation time has no impact. The pulse duration was chosen 
156 short enough so that the spectral bandwidth of the pulse covers all the wavelengths of interest. 
157 The choice of closely packed periodically arranged spheres is motivated by the desire to 
158 maximize the numerical inaccuracies in case of bad meshing. This way, an appropriate meshing 
159 for periodically arranged spheres should also suit randomly distributed spheres with similar 
160 interparticle distances.

161
Table 3: Summary of the simulation parameters

Parameter Values
Radius, R (nm)
Interparticle distance, Γ (nm)
Matrix material
Nanoparticle material
SiC thickness (nm)
Incident medium
Emerging medium
Simulation time (fs)
Pulse duration (fs)
CPML (nm)
Mesh size, Δ (nm)
Source type
Distance CPML - source
Distance reflectance plane - source
Distance reflectance plane - structure

5, 10, 20, 40, 60
4, 10
SiC
Ag
2R + 10
Air
Air
25
2.7
30
R/5, R/10, R/20, R/40, R/50, R/60, R/100, R/200
Plane-wave
5 Δ
10 Δ
10 Δ

Fig. 2. 2D representation of the interface field averaging method. The indices “i” and “j”
are taken along the two perpendicular periodic directions. ∆ is the mesh size, i.e., the size of
Yee-cell in the x direction.

between the source and the reflectance plane and the distance between the reflectance plane and
the top surface of the structure are fixed to 5∆, 10∆ and 10∆, respectively, where ∆ is the mesh
size. The plane-wave is introduced by direct field in free space and the host material is SiC. The
radius of the silver nanoparticles (R) varies between 5 and 60 nm. The edge-to-edge interparticle
distance (Γ) between two adjacent nanoparticles is either 4 or 10 nm. The nanoparticle is placed
at the center of the SiC slab in the periodic unit cell. Several mesh sizes are investigated: R/5,
R/10, R/20, R/40, R/50, R/60, R/100 and R/200, R being the radius of the nanoparticles. Given a
pulse duration of 2.7 fs, the simulation time is fixed to 25.0 fs in all cases in order to ensure a
steady-state solution of the studied system. 25.0 fs is a choice based on the consideration that light
travels in the simulation domain in approximately 0.5 fs. Once a steady-state solution is reached,
further increasing the simulation time has no impact. The pulse duration was chosen short enough
so that the spectral bandwidth of the pulse covers all the wavelengths of interest. The choice of
closely packed periodically arranged spheres is motivated by the desire to maximize the numerical
inaccuracies in case of bad meshing. This way, an appropriate meshing for periodically arranged
spheres should also suit randomly distributed spheres with similar interparticle distances.

Concerning the FEM simulations with COMSOL, a Perfectly Match Layer (PML) absorbing
medium of 750 nm is placed on the top and at the bottom of the stack. An unstructured
tetrahedral mesh is used where the smallest element is in the interspace between particles and
has a characteristic size of 0.66 nm. A mesh refinement study was done and dividing the mesh
size by 2 implied a maximum difference of 0.15% in the calculated spectra.

The FEM simulations were computed with Intel Xeon E5-2643 v4 6 core 3.40 GHz CPUs.
The FDTD simulations were computed with Intel Xeon E5-2660 8 core 2.20 GHz CPUs and
AMD Epyc 7551P 32 core 2.0 GHz on a HPC cluster. For the FDTD simulations 2 CPUs per
simulation were used. Table 4 and Table 5 summarize the computational costs for the FEM and
FDTD simulations. Only the finest mesh simulation times are reported for the FDTD method.
We plotted memory cost as a function of the error score (defined in next section) for the biggest
and the smallest nanoparticle radius that was investigated and for an interparticle distance of
4 nm (Fig. 3).
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Table 3. Summary of the simulation parameters

Parameter Values

Radius, R (nm) 5, 10, 20, 40, 60

Interparticle distance, Γ (nm) 4, 10

Matrix material SiC

Nanoparticle material Ag

SiC thickness (nm) 2R+ 10

Incident medium Air

Emerging medium Air

Simulation time (fs) 25

Pulse duration (fs) 2.7

CPML (nm) 30

Mesh size, ∆ (nm) R/5, R/10, R/20, R/40, R/50, R/60, R/100, R/200

Source type Plane-wave

Distance CPML - source (nm) 5 ∆

Distance reflectance plane - source (nm) 10 ∆

Distance reflectance plane - structure (nm) 10 ∆

182
183 Fig. 3: Memory cost (in MB) as a function of the error 
184 score for 5nm and 60nm radius nanoparticles with an 
185 interdistance of 4 nm. Each data point represents a different 
186 mesh size and the error score was calculated with the 
187 COMSOL simulation as reference. 

188

189 2.3 Performance Metrics
190 2.3.1 Convergence Metric
191 A common problem in convergence testing with complex structures is that the correct result is 
192 unknown. In order to evaluate convergence in simulations, we define a mesh size dependent 
193 error as:
194 𝜖𝑄

λ,Δ =  |𝑄λ,Δ ― 𝑄λ,ref|
195 where 𝑄λ,Δ is the quantity of interest (reflectance, transmittance or absorptance) at wavelength 
196 λ and mesh size Δ. The subscript “ref” stands for a reference simulation. In the following, the 
197 reference simulation is either the FDTD simulation computed with the finest mesh (R/100 for 
198 5, 10 and 20 nm radius nanoparticles and R/200 for 40 and 60 nm radius nanoparticles) or the 
199 FEM simulations (COMSOL).
200 Then, we defined a convergence error score (S) by arithmetic averaging (< … >) the three 
201 quantities:

SΔ =
1

3
< 𝜖𝑅

λ,Δ + 𝜖𝑇
λ,Δ + 𝜖𝐴

λ,Δ >  
(3)

202 Given that the spectra are normalized, SΔ is directly interpretable as a relative value.

203 2.3.2 IFA Improvement Metric
204 In order to investigate the impact of IFA on convergence, we defined a IFA enhancement 
205 factor 𝐹IFA

∆  as:

𝐹IFA
∆ =

SPer―C
Δ ― SIFA

Δ
SPer―C

Δ
(4)

206 where SPer― C
Δ  and SIFA

Δ  are calculated using FEM simulation as common reference. If 𝐹IFA
∆  is 

207 positive, then the convergence is improved by the IFA. If it is negative, then the IFA performs 
208 worse than the Per-C FDTD-implementation. Per-C meshing consists in assigning a permittivity 
209 εr(ω,r) to each component of the electric field (Ex,Ey,Ez). Per-C meshing is already an improved 
210 meshing technique compared to uniform meshing; where Ex, Ey and Ez of one Yee-cell all have 
211 identical permittivities. A comparison of Per-C versus uniform meshes can be found in [44].

212 3. Results

Fig. 3. Memory cost (in MB) as a function of the error score for 5 nm and 60 nm radius
nanoparticles with an interdistance of 4 nm. Each data point represents a different mesh size
and the error score was calculated with the COMSOL simulation as reference.

Table 4. FEM computation costs

Interparticle
Distance (nm)

Nanoparticle
radius (nm)

Time (min) Memory Cost (GB)

4

5 1066 55

10 753 44

20 570 36

40 492 33

60 445 32

10

5 1559 75

10 1003 54

20 807 45

40 628 39

60 538 36
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2.3. Performance metrics

2.3.1. Convergence metric

A common problem in convergence testing with complex structures is that the correct result is
unknown. In order to evaluate convergence in simulations, we define a mesh size dependent error
as:

ϵQ
λ,∆ = |Qλ,∆ − Qλ,ref |

where Qλ,∆ is the quantity of interest (reflectance, transmittance or absorptance) at wavelength λ
and mesh size ∆. The subscript “ref” stands for a reference simulation. In the following, the
reference simulation is either the FDTD simulation computed with the finest mesh (R/100 for 5-,
10- and 20-nm radius nanoparticles and R/200 for 40- and 60-nm radius nanoparticles) or the
FEM simulations (COMSOL).

Table 5. FDTD computation costs

[b]

Interparticle
Distance (nm)

Nanoparticle
radius (nm)

Time (min) Time (min) Memory Cost (GB) Memory Cost (GB)

With IFA Without IFA With IFA Without IFA

4

5 4137 3384 12 11

10 2610 3775 9.4 5.2

20 955 1357 5.8 3.3

40 448 335 4.1 2.4

60 218 345 3.4 2.0

10

5 6598 5498 25 23

10 1451 1922 15 8

20 563 836 7.5 4.2

40 132 122 4.7 2.7

60 85 89 3.9 2.3

Then, we defined a convergence error score (S) by arithmetic averaging (< . . . >) the three
quantities:

S∆ =
1
3

⟨︂
ϵR
λ,∆ + ϵ

T
λ,∆ + ϵ

A
λ,∆

⟩︂
(3)

Given that the spectra are normalized, S∆ is directly interpretable as a relative value.

2.3.2. IFA improvement metric

In order to investigate the impact of IFA on convergence, we defined a IFA enhancement factor
FIFA
∆

as:

FIFA
∆
=

SPer−C
∆ − SIFA

∆

SPer−C
∆

(4)

where SPer−C
∆ and SIFA

∆ are calculated using FEM simulation as common reference. If FIFA
∆

is
positive, then the convergence is improved by the IFA. If it is negative, then the IFA performs
worse than the Per-C FDTD-implementation. Per-C meshing consists in assigning a permittivity
εr(ω, r) to each component of the electric field (Ex,Ey,Ez). Per-C meshing is already an improved
meshing technique compared to uniform meshing; where Ex, Ey and Ez of one Yee-cell all have
identical permittivities. A comparison of Per-C versus uniform meshes can be found in [44].
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3. Results

One of the most important parameters in FDTD simulations is the mesh size. In this section, we
analyze the convergence of reflectance, transmittance and absorptance spectra as function of the
mesh size and the interparticle distance for radii varying between 5 and 60 nm. All the other
simulation parameters given in Table 3 are kept constant. First, the overall convergence will be
discussed. Then, the benefits of the IFA will be examined. Finally, for validation purposes, the
results will be confronted to FEM simulations realized with COMSOL.

3.1. Per-component mesh convergence

The error score was computed using Eq. (3) with a Per-C mesh FDTD simulation with the finest
grid as reference, for 4 and 10 nm particle inter-distances (Fig. 4(a), 4(d)). The error score is
plotted on a logarithmic scale, as function of the mesh size for various sphere radii. The RTA
spectra for the R = 40 nm particle radius and various mesh sizes are compared to those obtained
with the finest mesh (reference), and their differences are plotted (Fig. 4(b), 4(c), 4(e),4(f)).

213 One of the most important parameters in FDTD simulations is the mesh size. In this section, we 
214 analyze the convergence of reflectance, transmittance and absorptance spectra as function of 
215 the mesh size and the interparticle distance for radii varying between 5 and 60 nm. All the other 
216 simulation parameters given in Table 3 are kept constant. First, the overall convergence will be 
217 discussed. Then, the benefits of the IFA will be examined. Finally, for validation purposes, the 
218 results will be confronted to FEM simulations realized with COMSOL. 

219 3.1 Per-Component Mesh Convergence
220 The error score was computed using eq. (3) with a Per-C mesh FDTD simulation with the finest 
221 grid as reference, for 4 and 10 nm particle inter-distances (Fig. Fig. 4a,d). The error score is 
222 plotted on a logarithmic scale, as function of the mesh size for various sphere radii. The RTA 
223 spectra for the smallest particle radius (5 nm) and various mesh sizes are compared to those 
224 obtained with the finest mesh (reference), and their differences are plotted (Fig. 4b,c,e,f).

225
226 Fig. 4: Error score as function of the mesh size for an interparticle distance of 4 nm (a) and 10 nm (d). 
227 RTA spectra (in black) for a radius of 40 nm, an interparticle distance of 4 nm and a mesh size of R/5 nm 
228 (b) and R/60 nm (c). The red curves correspond to the R/200 simulation (taken as reference) and the 
229 green curves to the difference between red and black curves. (e) and (f) show the same simulations as (b) 
230 and (c) but for an interparticle distance of 10 nm.

231 From figure Fig. 4b, it appears that a mesh size of R/5 is too coarse. For a 40-nm radius particle, 
232 the error score is 13.7 % (Fig. Fig. 4a) and many resonance artifacts are present (compare black 
233 and red curves in Fig. Fig. 4b). For a mesh size of R/60, however, these unphysical resonances 
234 have disappeared (Fig. Fig. 4c) and the error score is reduced to 1.6 % (Fig. Fig. 4a). There is no 
235 absolute rule concerning the convergence. An important criterion is that the simulation has to 
236 reflect the physical reality. Thus, the number of resonance peaks and their positions are among 
237 the factors that matter the most. Based on that, it appears from examination of figure Fig. 5 that 
238 the convergence is acceptable when the error score is close or below 1.0 %. Once that level is 
239 reached, further reducing the mesh size slightly improves the convergence, but greatly increases 
240 the memory usage and the computation time. Caution needs to be taken concerning the 
241 convergence for the largest spheres nevertheless. For a nanoparticle radius of 60 nm, a mesh 
242 size of R/60 and an interparticle distance of 4 nm the error score is 2.7% (Fig. Fig. 4a) and the 
243 simulations do not converge. This is because the small interparticle distance results in an intense 

Fig. 4. Error score as function of the mesh size for an interparticle distance of 4 nm (a) and
10 nm (d). RTA spectra (in black) for a radius of 40 nm, an interparticle distance of 4 nm
and a mesh size of R/5 nm (b) and R/60 nm (c). The red curves correspond to the R/200
simulation (taken as reference) and the green curves to the difference between red and black
curves. (e) and (f) show the same simulations as (b) and (c) but for an interparticle distance
of 10 nm.

From Fig. 4(b), it appears that a mesh size of R/5 is too coarse. For a 40-nm radius particle,
the error score is 13.7% (Fig. 4(a)) and many resonance artifacts are present (compare black and
red curves in Fig. 4(b)). For a mesh size of R/60, however, these unphysical resonances have
disappeared (Fig. 4(c)) and the error score is reduced to 1.6% (Fig. 4(a)). There is no absolute
rule concerning the convergence. An important criterion is that the simulation has to reflect the
physical reality. Thus, the number of resonance peaks and their positions are among the factors
that matter the most. Based on that, it appears from examination of Fig. 5 that the convergence
is acceptable when the error score is close or below 1.0%. Once that level is reached, further
reducing the mesh size slightly improves the convergence, but greatly increases the memory usage
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and the computation time. Caution needs to be taken concerning the convergence for the largest
spheres nevertheless. For a nanoparticle radius of 60 nm, a mesh size of R/60 and an interparticle
distance of 4 nm the error score is 2.7% (Fig. 4(a)) and the simulations do not converge. This is
because the small interparticle distance results in an intense electric field gradient in the gap
between the nanoparticles, and a spatial resolution of 1 nm is too coarse to reliably describe the
electric field within a gap of 4 nm. By contrast, error score is much lower (1.8%) for a larger
gap, i.e. 10 nm (Fig. 4(d)). This confirms the hypothesis that insufficient spatial resolution of a
sharp electric field gradient between nanoparticles leads to poor convergence. For a nanoparticle
radius of 40 nm, an interparticle distance of 10 nm and a mesh size of R/60 the error score is
1.2% (Fig. 4(d)) and only minor differences with the R/200-mesh “reference” simulation are
present (Fig. 4(f)), the convergence can therefore also be labeled as acceptable.

Fig. 5. Reflection spectra for all mesh sizes and all radii for an interparticle-distance of 4
nm (a) and 10 nm (b).

3.2. IFA convergence

The convergence with and without the IFA method is assessed through the calculation of the IFA
enhancement factor computed with Eq. (4) and multiplied by 100 to be expressed as a percentage.
In order to evaluate the convergence with a common reference, the FEM simulation was taken as
reference. In most cases, IFA effectively improves the convergence of the simulations (Fig. 6).
The enhancement factor is bigger for larger nanoparticles (i.e. 60 and 40 nm) owing to the
increasing ratio between the nanoparticle radius and the fixed interparticle distance. The larger
the particle, the larger the reflection upon the surface of the nanoparticle. Therefore, a finer
description of this interface, as it is achieved by IFA, leads to a better convergence. For smaller
nanoparticles, it is essentially the interaction in between the NPs that dominates and thus IFA
has less impact. For both interparticle distances of 4 and 10 nm, a decrease in the enhancement
factor can be noticed for smaller mesh sizes. At some point, the mesh is small enough so that IFA
does not provide any major convergence enhancement, in that case FIFA

∆
is close to zero. Overall,

the IFA enhancement factor is higher for smaller interparticle distances. These results are a clear
indication that choosing appropriate meshing for simulations, i.e., with plasmonic nanoparticle
systems, requires fine particle discretization [44] and high interparticle spatial resolution [10].
The results also suggest that IFA could help improve the convergence of closely packed randomly
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273
274 Fig. 6: Impact of the IFA on the convergence for an interparticle distance of 4 nm (a) and 10 nm (b). 
275 Positive values of 𝐹IFA

∆ signify that improves the convergence with respect to Per-C meshing.

276

277 3.3 Accuracy evaluation
278 The different structures have been simulated by the Finite Element Method with COMSOL. 
279 Accuracy evaluation of the FDTD simulations (with Per-C or IFA meshing) is performed by 
280 comparing them with FEM simulations (Fig. Fig. 7). For small nanoparticles (Fig. 7a,d) and a 
281 mesh size of R/60 nm, both methods provide similar results. The peak positions (peaks of 
282 physical origin) are very similar and reported in table Table 6. The differences lie in the peak 
283 intensities. The error score is below 1%, for the finest mesh, R/60, and a particle radius of 5 
284 nm. These minor differences mean that the same physical insights can be extracted from both 
285 methods. For larger particles, e.g. R=60 nm, the error score lies within 1-3% for R/60 mesh size 
286 (Fig. Fig. 7b,e). The associated spectra (Fig. 7c,f) clearly show differences between FEM and 
287 FDTD results. In order to confirm that this is primarily due to a too coarse mesh size, a FDTD 
288 simulation with R/100 is shown as an insert; here an excellent agreement is reached between 
289 both methods. Figure Fig. 7c and Fig. 7f highlight also the benefit of employing IFA for coarser 
290 meshes. In particular, one can notice that the IFA-FDTD simulation is more accurate than the 
291 Per-C FDTD simulation (Fig. Fig. 7c) as the reflectance at 920 nm has a value of 63% for the 
292 FEM simulation, 58% for the IFA-FDTD simulation and only 49% for the per-C FDTD 
293 simulation, this also explains the positive value for 𝐹𝐼𝐹𝐴

∆  in Fig. Fig. 6. Moreover, a significant 

Fig. 6. Impact of the IFA on the convergence for an interparticle distance of 4 nm (a) and
10 nm (b). Positive values of FIFA

∆
signify that IFA improves the convergence with respect to

Per-C meshing.

Fig. 7. RTA spectra simulated by FDTD with IFA (solid lines) and Per-C (dashed lines)
meshes and by FEM (dash-dotted lines). Spectra (a) and (c) were computed with spheres
of 5, 60 nm, respectively, at an interparticle distance of 4 nm. Spectra (d) and (f) were
computed with spheres of 5, 60 nm, respectively, at an interparticle distance of 10 nm. The
FDTD spectra were simulated with a mesh size of R/60. Figures (b) and (e) show the error
scores for the IFA FDTD simulations with the FEM simulations taken as reference. Inserts
in Figures (c) and (f) are computed with a R/100 mesh size.

distributed spheres. Very small interparticle distances may occur, and this is the scenario where
IFA performs best.

3.3. Accuracy evaluation

The different structures have been simulated by the Finite Element Method with COMSOL.
Accuracy evaluation of the FDTD simulations (with Per-C or IFA meshing) is performed by
comparing them with FEM simulations (Fig. 7). For small nanoparticles (Fig. 7(a), 7(d)) and
a mesh size of R/60 nm, both methods provide similar results. The peak positions (peaks of
physical origin) are very similar and reported in Table 6. The differences lie in the peak intensities.
The error score is below 1%, for the finest mesh, R/60, and a particle radius of 5 nm. These minor



Research Article Vol. 3, No. 6 / 15 Jun 2024 / Optics Continuum 854

differences mean that the same physical insights can be extracted from both methods. For larger
particles, e.g. R= 60 nm, the error score lies within 1-3% for R/60 mesh size (Fig. 7(b), 7(e)).
The associated spectra (Fig. 7(c), 7(f)) clearly show differences between FEM and FDTD results.
In order to confirm that this is primarily due to a too coarse mesh size, a FDTD simulation
with R/100 is shown as an insert; here an excellent agreement is reached between both methods.
Figure 7(c) and 7(f) highlight also the benefit of employing IFA for coarser meshes. In particular,
one can notice that the IFA-FDTD simulation is more accurate than the Per-C FDTD simulation
(Fig. 7(c)) as the reflectance at 920 nm has a value of 63% for the FEM simulation, 58% for the
IFA-FDTD simulation and only 49% for the per-C FDTD simulation. This also explains the
positive value for FIFA

∆
in Fig. 6. Moreover, a significant impact of IFA-FDTD, compared with

Per-C FDTD, is visible in the 800-1000 nm region (Fig. 7(c)).

Table 6. Comparison of the reflection peak positions for IFA, Per-C
FDTD and FEM simulations. Values obtained from Fig. 7

Interparticle distance (nm) 4 10

Radius (nm) 5 60 5 60

FEM – peak position (nm) 900 830 900 810

IFA- peak position (nm) 912 836 944 819

Per-C - peak position (nm) 902 836 979 819

4. Discussion

In view of the results reported above, several published works, which make use of FDTD
simulations for modelling plasmonic structures, are reviewed and discussed hereafter. Table 7
summarizes the most challenging values of 3 parameters (particle radius, interparticle distance,
R/∆) used in each reference. The last column indicates whether or not the convergence would be
achieved if these parameters were used as input for our case study.

Table 7. The values of the 3 most critical parameters reported in each reference. The last column
indicates whether or not the convergence would be achieved if these parameters were used as input
for our case study. The most critical parameters for our work were determined by the intersection of
the error curves with a threshold value of 1% in Fig. 7(b) and 7(e). R/∆ is the ratio between particle

radius and mesh size.

TableReference Software
package

Radius
(nm)

Interparticle
distance (nm)

R/∆ Nanoparticle
pattern

Convergence
(yes/no)

[31] In-house
FDTD

4 10.7 32 Periodic
arrangement

yes

[24] OmniSim
package

12 10 3 Random
distribution

yes/no

[30] Lumerical 10 0.5 20 Chain-like
structures

no

[57] Lumerical 40 0.5 80 Dimers no

[58] MEEP 30 2 300 Dimers / trimers yes

This work In-house
FDTD

5 10 27 Periodic
arrangement

yes

This work In-house
FDTD

10 4 53 Periodic
arrangement

yes

Lesina et al. used FDTD simulations to support their experimental bottom-up laser approach
to form nanoparticles on a metallic surface through ablation and redeposition [31]. Various
nanoparticle sizes were simulated. The smallest nanoparticle radius was 4 nm, with a mesh size
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of 0.125 nm and the smallest interparticle distance was 10.7 nm. Those are the values we consider
in Table 7 for this reference. In [31], it is stated that the chosen mesh size ensures converging
results, which is confirmed by comparison with our results since we reach convergence for a
mesh size of 0.250 nm in similar conditions.

Kozioł et al. investigated silver nanoparticles formed by thermal annealing of thin films.
The lateral dimensions of their simulation domain was 2.7× 3.0 µm2 [24]. The positions and
shapes of the nanoparticles followed experimental observations. The nanoparticle sizes followed
a Gaussian distribution, and the smallest nanoparticle had a diameter of 12 nm. Due to the
relatively large simulation domain, the mesh size was set to 12 nm (limited by the available
computer memory). In their simulation geometry, the interparticle distance was most often about
the size of the wavelength, and in some cases hotspots arose due to much smaller interparticle
distances. It appears that, for an interparticle distance of 10 nm, their simulation grid was not
fine enough. However, only few nanoparticles were both small and very close to one another.
In most cases, the nanoparticles were much larger and far apart, and convergence was achieved
according to our criteria. In Table 7, we therefore indicate “yes/no” in the last column.

Tira et al. used FDTD simulations to analyze the electromagnetic response of gold nanoparticles
organized in chain-like structures [30]. They investigated the influence of the number of particles
and the interparticle distance. The smallest interparticle distance was 0.5 nm and the nanoparticle
radius was 10 nm. The authors reported that their simulations converged as the far-field response
was identical to simulations with a 0.1 nm mesh size. However, a mesh of 0.5 nm means that
there was only one Yee-cell between the nanoparticles. Our study clearly shows that this is a
major cause of lack of convergence. This conclusion would not be different if silver would be
replaced by gold in our study. Nonetheless, the chain-like structure is made of a finite number of
particles, which is different from our periodic simulations, and might explain the discrepancy
between both results.

Abu et al. studied the plasmon coupling, quantum yield and effect of tip geometry of
gold nanoparticles using FDTD simulations [57]. They chose a mesh size of 0.5 nm and the
nanoparticle dimers had a radius of 40 nm. The interparticle distance varied from 0.5 nm to
200 nm. Here again, the interparticle region was discretized using only one Yee-cell for the
smallest interparticle distance. As a consequence, our study suggests some convergence issues
may happen for such simulations. Again, the simulated structure consisted of dimers, which is
different from a periodic structure.

Nagarajan et al. studied dimer and trimer nanosphere clusters and investigated the surface-
enhanced Raman spectroscopic characteristics [58]. The silver nanoparticles had a radius of 30
nm and the interparticle distance was 2 nm. A very fine mesh of 0.1 nm was adopted in this
study. Such a fine resolution ensures convergence even for a periodic arrangement like the one
considered in this article. Despite the fact that in their study the interparticle distance was 4 times
larger than in [30] and [57], the mesh size was much smaller.

5. Conclusion

We have studied the numerical convergence of FDTD method for plasmonic systems consisting
of a periodic assembly of interacting spherical nanoparticles. The effect of the nanoparticle’s
radius and the interparticle distance were investigated as function of the mesh size and the effect
of interface field averaging was examined. We showed that a fine meshing in the gap between the
nanoparticles is essential for the convergence. Moreover, a fine resolution of the nanoparticle’s
surface (discretization error of curved surfaces using a cubic mesh) is equally important. To
tackle the latter issue, we used IFA, which turned out to be essential for large nanoparticles (i.e.,
radius> 40 nm) in order to improve convergence. Finally, a good agreement between IFA FDTD
and FEM was observed, which proves both techniques are well-suited for the simulation of this
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kind of plasmonic structures. In literature, it frequently happens that articles do no mention any
numerical parameters used in FDTD simulations.
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